Selected Lupin Publications

Narrow-leafed lupin genomic resources

  • Wang P, Zhou G, Jian J, Yang H, Renshaw D, Aubert MK, Clements J, He T, Sweethingham M, Li C (2021) Whole-genome assembly and re-sequencing reveal genomic imprint and key genes of rapid domestication in narrow-leafed lupin. The Plant Journal 105 1192-1210.
  • Hane JK, Yao M, Kamphuis LG, Nelson MN, Atkins CA, Bayer P, Bravo A, Bringans S, Cannon S, Edwards D, Foley R, Garg G, Gao L-L, Harrison MJ, Huang W, Hurgobin B, Li S, Liu C-W, McGrath A, Morahan G, Murray J, Weller, J, JianboJ, Singh KB (2017) A reference genome sequence for lupin (Lupinus angustifolius), an emerging health food: Insights into plant-microbe interactions and legume evolution. Plant Biotechnology Journal 15 318-330.
  • Taylor CM, Jost R, Erskine W and Nelson MN (2016) Identifying stable reference genes for qRT-PCR normalisation in gene expression studies of narrow-leafed Lupin (Lupinus angustifolius L.). PLoS One 11 e0148300.
  • Kamphuis LG, Hane JK, Nelson MN, Gao L, Atkins CA and Singh KB (2014) Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers. Plant Biotechnology Journal 13, 14-25.
  • Yang H, Tao Y, Zheng Z, Zhang Q, Zhou G, Sweetingham MW, Howieson JG, Li C. 2013. Draft genome sequence, and a sequence-defined genetic linkage map of the legume crop species Lupinus angustifolius L. PLoS One 8, e64799.
  • Yang H, Tao Y, Zheng Z, Li C, Sweetingham MW, Howieson JG. 2012. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genomics 13, 318.
  • Gao L-L, Hane J, Kamphuis LG, Foley RF, Shi B-J, Atkins C, Singh K (2011) Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing. BMC Genomics 12, 521.

White lupin genomic resources

  • Xu W, Zhang Q, Yuan W, Xu F, Muhammad Aslam M, Miao R, Li Y, Wang Q, Li X, Zhang X, Zhang K, Xia T, Cheng F (2020) The genome evolution and low-phosphorus adaptation in white lupin. Nature Communications 26 1069.
  • Hufnagel B, Marques A, Soriano A, Marquès L, Divol F, Doumas P, Sallet E, Mancinotti D, Carrere S, Marande W, Arribat S, Keller J, Huneau C, Blein T, Aimé D, Laguerre M, Taylor J, Schubert V, Nelson M, Geu-Flores F, Crespi M, Gallardo K, Delaux PM, Salse J, Bergès H, Guyot R, Gouzy J, Péret B (2020) High-quality genome sequence of white lupin provides insight into soil exploration and seed quality. Nature Communications 24 492.

Lupin genetic mapping and synteny

  • Plewiński P, Ćwiek-Kupczyńska H, Rudy E, Bielski W, Rychel-Bielska S, Stawiński S, Barzyk P, Krajewski P, Naganowska B, Wolko B, Książkiewicz M (2020) Innovative transcriptome-based genotyping highlights environmentally responsive genes for phenology, growth and yield in a non-model grain legume. Plant Cell and Environment 43 2680-2698.
  • Książkiewicz M, Nazzicari N, Yang H, Nelson MN, Renshaw D, Rychel S, Ferrari B, Carelli M, Tomaszewska M, Stawiński S, Naganowska B, Wolko B, Annicchiarico P (2017) A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Scientific Reports 10 15335.
  • Wyrwa K, Książkiewicz M, Szczepaniak A, Susek K, Podkowiński J and Naganowska B (2016) Integration of Lupinus angustifolius L. (narrow-leafed lupin) genome maps and comparative mapping within legumes. Chromosome Research 24 355-78.
  • Kroc, M., Koczyk, G., _Swiezcicki, W., Kilian, A. and Nelson, M.N. (2014) New evidence of ancestral polyploidy in the Genistoid legume Lupinus angustifolius L. (narrow-leafed lupin). Theoretical and Applied Genetics 127, 1237–1249.
  • Yang H, Tao Y, Zheng Z, Shao D, Lo Z, Sweetingham MW, Buirchell BJ, Li C. 2013. Rapid development of molecular markers by next-generation sequencing linked to a gene conferring phomopsis stem blight disease resistance for marker-assisted selection in lupin (Lupinus angustifolius L.) breeding. Theoretical and Applied Genetics 126, 511-522.
  • Nelson MN, Moolhuijzen PM, Boersma JG, Chudy M, Lesniewska K, Bellgard M, Oliver RP, Swiecicki W, Wolko B, Cowling WA, Ellwood SR (2010) Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicusDNA Research 17, 73-83.
  • Phan HT, Ellwood SR, Adhikari K, Nelson MN and Oliver RP. (2007) The first genetic and comparative map of white lupin (Lupinus albus L.): Identification of QTLs for anthracnose resistance and flowering time, and a locus for alkaloid content. DNA Research 14, 59-70.
  • Nelson M, Phan H, Ellwood S, Moolhuijzen P, Hane J, Williams A, O’Lone C, Fosu-Nyarko J, Scobie M, Cakir M, Jones M, Bellgard M, Ksiazkiewicz M, Wolko B, Barker S, Oliver R, Cowling W (2006) The first gene-based map of Lupinus angustifolius L.- Location of domestication genes and conserved synteny with Medicago truncatulaTheoretical and Applied Genetics 113, 225-238.

Lupin diversity and adaptation

  • Rychel-Bielska S, Surma A, Bielski W, Kozak B, Galek R, Książkiewicz M (2021) Quantitative control of early flowering in white lupin (Lupinus albus L.). International Journal of Molecular Sciences 22 3856.
  • Mousavi-Derazmahalleh M, Nevado B, Bayer PE, Filatov DA, Hane JK, Edwards D, Erskine W, Nelson MN (2018) The western Mediterranean region provided the founder population of domesticated narrow-leafed lupin. Theoretical and Applied Genetics 131 2543-2554.
  • Mousavi-Derazmahalleh M, Bayer PE, Nevado B, Hurgobin B, Filatov D, Kilian A, Kamphuis LG, Singh KB, Berger JD, Hane JK, Edwards D, Erskine W, Nelson MN (2018)Exploring the genetic and adaptive diversity of a pan-Mediterranean crop wild relative: narrow-leafed lupin. Theoretical and Applied Genetics 131 887-901.
  • Atnaf M, Yao N, Martina K, Dagne K, Wegary D, Tesfaye K (2017) Molecular genetic diversity and population structure of Ethiopian white lupin landraces: Implications for breeding and conservation. PLoS One 12 e0188696.
  • Nelson MN, Książkiewicz M, Rychel S, Besharat N, Taylor CM, Wyrwa K, Jost R, Erskine W, Cowling WA, Berger JD, Batley J, Weller JL, Naganowska B and Wolko B (2017) The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T (FT) homologue. New Phytologist213 220-232.
  • Książkiewicz M, Rychel S, Nelson MN, Wyrwa K, Naganowska B and Wolko B (2016) Expansion of the phosphatidylethanolamine binding protein family in legumes: a case study of Lupinus angustifolius L. FLOWERING LOCUS T homologs, LanFTc1 and LanFTc2BMC Genomics. 2016 17 820.
  • Berger JD, Clements JC, Nelson MN, Kamphuis LG, Singh KB and Buirchell (2013) The essential role of genetic resources in narrow-leafed lupin improvement. Crop and Pasture Science 64, 361-373.
  • Lambers H, Clements JC, Nelson MN (2013) How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). American Journal of Botany 100, 263-288.
  • Berger J, Buirchell B, Luckett D, Nelson M (2012) Domestication bottlenecks limit genetic diversity and constrain adaptation in narrow-leafed lupin (Lupinus angustifolius L.). Theoretical and Applied Genetics 124, 637–652.
  • Berger JD, Buirchell BJ, Luckett DJ, Palta JA, Ludwig C, Liu DL (2012) How has narrow-leafed lupin changed in its 1st 40 years as an industrial, broad-acre crop? A G x E-based characterization of yield-related traits in Australian cultivars. Field Crops Research 126, 152-164.
  • Berger JD, Adhikari K, Wilkinson D, Buirchell B, Sweetingham MW (2008) Ecogeography of the old world lupins: 1) Ecotypic variation in yellow lupin (Lupinus luteus L.). Australian Journal of Agricultural Research 59, 691-701.
  • Berger JD, Speijers J, Shrestha D, Ludwig C, Palta JA, Buirchell B (2008) Ecogeography of the old world lupins: 2) Characterizing the habitat range. In: Palta JA, Berger JD (eds) Proceedings of the 12th International Lupin Conference, ‘Lupins for Health and Wealth’, Fremantle, Western Australia, pp 355-361.


Molecular markers linked to domestication traits

  • Rychel-Bielska S, Nazzicari N, Plewiński P, Bielski W, Annicchiarico P, Książkiewicz M (2020) Development of PCR-based markers and whole-genome selection model for antrhacnose resistance in white lupin (Lupinus albus L.). Journal of Applied Genetics 61 531-545.
  • Książkiewicz M, Wójcik K, Irzykowski W, Bielski W, Rychel S, Kaczmarek J, Plewiński P, Rudy E, Jędryczka M (2020) Validation of Diaporthe toxica resistance markers in European Lupinus angustifolius germplasm and identification of novel resistance donors for marker-assisted selection. Journal of Applied Genetics 61 1-12.
  • Plewiński P, Książkiewicz M, Rychel-Bielska S, Rudy E, Wolko B (2019) Candidate domestication-related genes revealed by expression quantitative trait loci mapping of narrow-leafed lupin (Lupinus angustifolius L.). International Journal of Molecular Sciences 12, 5670.
  • Kroc M, Koczyk G, Kamel KA, Czepiel K, Fedorowicz-Strońska O, Krajewski P, Kosińska J, Podkowiński J, Wilczura P, Święcicki W (2019) Transcriptome-derived investigation of biosynthesis of quinolizidine alkaloids in narrow-leafed lupin (Lupinus angustifolius L.) highlights candidate genes linked to iucundus locus. Scientific Reports 19 2231.
  • Rychel S, Książkiewicz M (2019) Development of gene-based molecular markers tagging low alkaloid pauper locus in white lupin (Lupinus albus L.). Journal of Applied Genetics 60 269-281.
  • Kroc M, Czepiel K, Wilczura P, Mokrzycka M, Święcicki W (2019) Development and validation of a gene-targeted dCAPS marker for marker-assisted selection of low-alkaloid content in seeds of narrow-leafed lupin (Lupinus angustifolius L.). Genes 10 428.
  • Fisher K, Dieterich R, Nelson MN, Kamphuis LG, Singh KB, Rotter B, Krezdom N, Winter P, Wehling P and Ruge-Wehling B (2015) Characterization and mapping of LanrBo – a locus conferring anthracnose resistance in narrow-leafed lupin (Lupinus angustifolius L.). Theoretical and Applied Genetics 128 2121-2130.
  • Boersma JG, Nelson MN, Sivasithamparam K, Yang H. 2009. Development of sequence-specific PCR markers linked to the Tardus gene that reduces pod shattering in narrow-leafed lupin (Lupinus angustifolius L.). Molecular Breeding 23, 259-267.
  • Boersma JG, Buirchell BJ, Sivasithamparam K, Yang H. 2007. Development of a sequence-specific PCR marker linked to the Ku gene which removes the vernalization requirement in narrow-leafed lupin. Plant Breeding 126, 306-309.
  • Boersma JG, Buirchell BJ, Sivasithamparam K, Yang H. 2007. Development of two sequence-specific PCR markers linked to the le gene that reduces pod shattering in narrow-leafed Lupin (Lupinus angustifolius L.). Genetics and Molecular Biology 30, 623-629.
  • You M, Boersma JG, Buirchell BJ, Sweetingham MW, Siddique KHM, Yang H. 2005. A PCR-based molecular marker applicable for marker-assisted selection for anthracnose disease resistance in lupin breeding. Cellular and Molecular Biology Letters 10, 123-134.
  • Boersma JG, Pallotta M, Li CD, Buirchell BJ, Sivasithamparam K, Yang H. 2005. Construction of a genetic linkage map using MFLP and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus angustifolius L.). Cellular and Molecular Biology Letters 10, 331-344.
  • Yang H, Boersma JG, You M, Buirchell BJ, Sweetingham MW. 2004. Development and implementation of a sequence-specific PCR marker linked to a gene conferring resistance to anthracnose disease in narrow-leafed lupin (Lupinus angustifolius L.). Molecular Breeding 14, 145-151.
  • Yang H, Shankar M, Buirchell BJ, Sweetingham MW, Caminero C, Smith PMC. 2002. Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin (Lupinus angustifolius L.). Theoretical and Applied Genetics 105, 265-270.

Seed biology and narrow-leafed lupins as a human health food

  • Czepiel K, Krajewski P, Wilczura P, Bielecka P, Święcicki W, Kroc M (2021) Expression profiles of alkaloid-related genes across the organs of narrow-leafed lupin (Lupinus angustifolius L.) and in response to anthracnose infection. International Journal of Molecular Sciences 2676.
  • Otterbach SL, Yang T, Kato L, Janfelt C, Geu-Flores F (2019) Quinolizidine alkaloids are transported to seeds of bitter narrow-leafed lupin. Journal of Experimental Botany 70 5799-5808,
  • Frick KM, Foley RC, Siddique KHM, Singh KB, Kamphuis LG (2019) The role of jasmonate signalling in quinolizidine alkaloid biosynthesis, wounding and aphid predation response in narrow-leafed lupin. Functional Plant Biology 46 443-454.
  • DeBoer K, Melser S, Sperschneider J, Kamphuis LG, Garg G, Gao LL, Frick K, Singh KB (2019) Identification and profiling of narrow-leafed lupin (Lupinus angustrifolius) microRNAs during seed development. BMC Genomics 14 135.
  • Frick KM, Foley RC, Kamphuis LG, Siddique KHM, Garg G, Singh KB (2018) Characterization of the genetic factors affecting quinolizidine alkaloid biosynthesis and its response to abiotic stress in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell and Environment 41 2155-2168.
  • Frick KM, Kamphuis LG, Siddique KHM, Singh KB and Foley RC (2017) Quinolizidine alkaloid biosynthesis in lupins and prospects for grain quality improvement. Frontiers in Plant Science, 8, 87.
  • Lima-Cabello E, Alche V, Foley RC, Andrikopoulos S, Morahan G, Singh KB, Alche JD and Jimenez-Lopez JC (2017) Narrow-leafed lupin (Lupinus angustifolius L.) β-conglutin proteins modulate the insulin signaling pathway as potential type 2 diabetes treatment and inflammatory-related disease amelioration. Molecular Nutrition and Food Research 61 1600819.
  • Jimenez-Lopez JC, Melser S, de Boer K, Thatcher LF, Kamphuis LG, Foley RC and Singh KB (2016) Narrow-leafed lupin (Lupinus angustifolius) β1- and β6-conglutin proteins exhibit antifungal activity, protecting plants against necrotrophic pathogen induced damage from Sclerotinia sclerotiorum and Phytophthora nicotianaeFrontiers in Plant Science, 18, 1856.
  • Foley R, Jimenez-Lopez JC, Kamphuis LG, Hane JK and Singh KB (2015) Comparative genomic study of conglutin seed storage proteins across lupin species. BMC Plant Biology, 15 106.
  • Foley R, Gao L-L, Spriggs A, Soo L, Goggin D, Smith P, Atkins C, Singh K (2011) Identification and characterisation of seed storage protein transcripts from Lupinus angustifoliusBMC Plant Biology 11, 59.
  • Belski R, Mori TA, Puddey IB, Sipsas S, Woodman RJ, Ackland TR, Beilin LJ, Dove ER, Carlyon NB, Jayaseena V, et al. (2010) Effects of lupin-enriched foods on body composition and cardiovascular disease risk factors: a 12-month randomized controlled weight loss trial. International Journal Obesity.
  • Duranti M, Consonni A, Magni C, Sessa F, Scarafoni A (2008) The major proteins of lupin seed: Characterisation and molecular properties for use as functional and nutraceutical ingredients. Trends in Food Science & Technology19 624-633.
  • Lee YP, Mori TA, Sipsas S, Barden A, Puddey IB, Burke V, Hall RS, Hodgson JM (2006) Lupin-enriched bread increases satiety and reduces energy intake acutely. American Journal of Clinical Nutrition, 84 975-980.
  • Johnson SK, McQuillan PL, Sin JH, Ball MJ (2003) Sensory acceptability of white bread with added Australian sweet lupin (Lupinus angustifolius) kernel fibre and its glycaemic and insulinaemic responses when eaten as a breakfast. J Sci Food Agric, 83 1366-1372.